
Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34
https://doi.org/10.1186/s12711-018-0404-z

RESEARCH ARTICLE

SNPrune: an efficient algorithm to prune
large SNP array and sequence datasets based
on high linkage disequilibrium
Mario P. L. Calus*  and Jérémie Vandenplas

Abstract 

Background:  High levels of pairwise linkage disequilibrium (LD) in single nucleotide polymorphism (SNP) array or
whole-genome sequence data may affect both performance and efficiency of genomic prediction models. Thus, this
warrants pruning of genotyping data for high LD. We developed an algorithm, named SNPrune, which enables the
rapid detection of any pair of SNPs in complete or high LD throughout the genome.

Methods:  LD, measured as the squared correlation between phased alleles (r2), can only reach a value of 1 when
both loci have the same count of the minor allele. Sorting loci based on the minor allele count, followed by compari-
son of their alleles, enables rapid detection of loci in complete LD. Detection of loci in high LD can be optimized by
computing the range of the minor allele count at another locus for each possible value of the minor allele count that
can yield LD values higher than a predefined threshold. This efficiently reduces the number of pairs of loci for which
LD needs to be computed, instead of considering all pairwise combinations of loci. The implemented algorithm
SNPrune considered bi-allelic loci either using phased alleles or allele counts as input. SNPrune was validated against
PLINK on two datasets, using an r2 threshold of 0.99. The first dataset contained 52k SNP genotypes on 3534 pigs and
the second dataset contained simulated whole-genome sequence data with 10.8 million SNPs and 2500 animals.

Results:  SNPrune removed a similar number of SNPs as PLINK from the pig data but SNPrune was almost 12 times
faster than PLINK. From the simulated sequence data with 10.8 million SNPs, SNPrune removed 6.4 and 1.4 million
SNPs due to complete and high LD. Results were very similar regardless of whether phased alleles or allele counts
were used. Using allele counts and multi-threading with 10 threads, SNPrune completed the analysis in 21 min. Using
a sliding window of up to 500,000 SNPs, PLINK removed ~ 43,000 less SNPs (0.6%) in the sequence data and SNPrune
was 24 to 170 times faster, using one or ten threads, respectively.

Conclusions:  The SNPrune algorithm developed here is able to remove SNPs in high LD throughout the genome
very efficiently in large datasets.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Most current applications of genomic data involve either
high-density single nucleotide polymorphism (SNP)
arrays or whole-genome sequence data. Depending on
the genetic diversity of the samples and the density of
SNP arrays, there may be considerable redundancy in loci
[1], in the sense that many pairs of SNPs are in very high
or complete linkage disequilibrium (LD), i.e. they have

an r2 value [2] of (close to) 1. The extent of such redun-
dancy is expected to be especially large for genomic data
from populations with a small effective population size,
which indicates high levels of LD, such as that typically
observed in livestock populations e.g. [1, 3]. For applica-
tions such as genomic prediction, it is common practice
to remove one SNP from each pair of SNPs with an r2
value of 1 [4]. Removing loci based on high levels of pair-
wise LD is commonly known as LD pruning. If all pos-
sible pairs of redundant loci are considered for pruning,

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence: mario.calus@wur.nl
Animal Breeding and Genomics, Wageningen University & Research, P.O.
Box 338, 6700 AH Wageningen, The Netherlands

http://orcid.org/0000-0002-3213-704X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-018-0404-z&domain=pdf

Page 2 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

computation of pairwise LD between all available SNPs
may not be computationally feasible.

Several tools exist that compute pairwise LD between
SNPs [5, 6]. These tools are used to characterize the extent
of LD in a population [7–9], to evaluate LD in regions
on the genome where significant associations have been
detected in genome-wide association studies (GWAS)
[10–12], but also to prune for LD [5]. Characterization of
the extent of LD in a population and evaluation of LD in
regions on the genome require computation of LD across
relatively short distances on the genome. For this reason,
but also to reduce overall computational requirements,
existing tools generally compute LD between pairs of SNPs
located within a certain distance on the genome, as defined
by the user. However, for LD pruning, it may be desirable
to consider LD for all pairwise combinations of loci.

Wiggans et al. [4] noted that highly correlated SNPs
should have similar MAF, and thus they evaluated only
pairs of SNPs with a difference in MAF less than 2.5%
units. These authors simply considered that two SNPs
are perfectly correlated if the genotypes were all the same
(0–0, 1–1, and 2–2) or all opposite (0–2, 1–1, and 2–0),
while allowing 0.5% of the individual genotypes to differ
from those rules, to allow for genotyping errors.

The objectives of our study were (1) to develop an
algorithm to be able to detect quickly any pair of SNPs
in complete or very high LD in very large datasets, using
the assumption that highly correlated SNPs should have
similar MAF, and (2) to demonstrate the performance of
this algorithm.

Methods
Detection of SNPs in complete LD
The first step in the SNPrune algorithm is to identify
redundant SNPs because they are in complete LD with
other SNPs. The pseudo-code of this first step that is
described hereafter is provided in Additional file 1.

One way to detect SNPs in complete LD with other
SNPs, is to compute the squared correlation between
their phased alleles, hereafter termed r2LD , which is equiv-
alent to the r2 value described by Hill and Robertson [2]:

where ai,j,l is the code of the phased allele l of individual i at
SNP j , ai,k ,l is the code of the phased allele l of individual i
at SNP k , and n is the number of individuals. Computation

(1)

r2LD
(

a.,j,.; a.,k ,.
)

=

(

(

∑2
l=1

∑

i ai,j,lai,k ,l

)

−
∑2

l=1

∑

i ai,j,l
∑2

l=1

∑

i ai,k ,l
2n

)2

(

∑2
l=1

∑

i a
2
i,j,l −

(

∑2
l=1

∑

i ai,j,l

)2

2n

)(

∑2
l=1

∑

i a
2
i,k ,l −

(

∑2
k=1

∑

i ai,k ,l

)2

2n

) ,

of all squared correlations between all phased alleles of m
loci involves computation of

(

m2 −m
)

/2 correlations and
is computationally unfeasible if m is very large, as may be
the case for some high-density SNP arrays, but especially
for whole-genome sequence data.

Considering that the squared correlation between
phased alleles of two SNPs can only be 1 when the MAF
(and thus the total count of the minor allele) are the same
at both loci, a more efficient approach is to take the fol-
lowing steps for each of the SNPs:

(1)	 Compute the total count of the minor allele across
all individuals.

(2)	 Sort all SNPs on these counts.
(3)	 For any pair of SNPs that have the same minor allele

count, compare the pairwise phased alleles for both
haplotypes of each individual and stop as soon as an
individual is identified that has a haplotype with the
minor allele at one locus and the major allele at the
other locus, or vice versa.

(4)	 If all animals passed the check in step (3), then
remove the “leftmost SNP” (which is the SNP with
the lowest minor allele count due to the sorting in
step (2); if both SNPs have the same minor allele count,
the one that appeared in the data first is removed).

In step (1), first the count of the minor allele is com-
puted for each locus j , by computing the sum of the
alleles (

∑

i ai,j,l) assuming that one allele is coded as 0 and
the other as 1, and then translating that into the count of
the number of minor alleles as:

This means that for each SNP it is assumed that the
minor alleles are coded as 1 and the major alleles are
coded as 0, without changing the coding of the individual

(2)











if

�

�

i

ai,j,l < n+ 1

�

:
�

i

ai,j,l

else: 2n−
�

i

ai,j,l
.

alleles stored in memory. This assumption is used here-
after as well. To avoid having to change the coding for
many individual allele counts for the comparison in step

Page 3 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

(3), the algorithm stores for each SNP the information
on whether the count of the major or the minor allele is
used. In step (3), there are two possibilities for two SNPs
with the same sum of alleles:

1.	 Both SNPs have the same allele code for the minor
allele;

2.	 The two SNPs have opposite allele codes for the
minor allele.

If (1) is the case, then in step (3) the code of the phased
alleles on each haplotype within each individual should
be the same for SNPs j and k , i.e. both should be either 0
or 1, to reach a squared correlation of 1. If (2) is the case,
then in step (3) the phased alleles on each haplotype of
SNPs j and k within each individual should either be 0
and 1 or 1 and 0, respectively, for those SNPs to reach a
squared correlation of 1.

When no phased allelic data is available, the r2 value
between allele counts ( r2ac ) is computed, which is a good

pseudo-code of this second step that is described here-
after is provided in Additional file 1. Continuing from
Eq. (1), i.e. using phased alleles coded as 0 or 1, the aim
here is to identify pairs of SNPs with an r2LD value higher
than a pre-defined threshold t , for which the following
holds:

Note that all terms in Eq. (1) can be computed once per
SNP and stored, except for

∑2
l=1

∑

i ai,j,lai,k ,l . To isolate
this term, we use the earlier assumption that for any pair
of SNPs, the minor alleles are coded as 1 and the major
alleles are coded as 0. In this way, the covariance between
loci arises only from combinations of alleles coded as 1
on both loci, and consequently in all cases rLD is higher
than 0. Therefore, Eq. (4) can be simplified to:

Then, it follows that:

Due to the assumption that minor alleles are coded as 1
and major alleles as 0, any of the sums of the products of
the alleles within individual i , either on the same locus
(i.e.

∑2
l=1

∑

i a
2
i,j,l ) or between two loci (i.e.

∑2
l=1

∑

i ai,j,lai,k ,l ), can be computed as the number of
times that both alleles are 1. Note that for the observed
values of the sums of allele counts, i.e.

∑2
l=1

∑

i ai,j,l for
locus j and

∑2
l=1

∑

i ai,k ,l for locus k , the maximum value
for r2LD in Eq. (1) is obtained when

∑2
l=1

∑

i ai,j,lai,k ,l is
maximized. This is achieved, when an allele 1 at locus j is
as often as possible observed together with an allele 1 at
locus k . In a formula, the expected maximum number of
times that this can happen is:

(4)
∣

∣rLD
(

a.,j,., a.,k ,.
)∣

∣ >
√
t.

(5)rLD
(

a.,j,., a.,k ,.
)

>
√
t

(6)

2
�

l=1

�

i

ai,j,lai,k ,l

>

�

�

�

�

�

�

t







2
�

l=1

�

i

a2i,j,l −

�

�2
l=1

�

i ai,j,l

�2

2n













2
�

l=1

�

i

a2i,k ,l −

�

�2
l=1

�

i ai,k ,l

�2

2n







+

�2
l=1

�

i ai,j,l
�2

l=1

�

i ai,k ,l

2n
.

(7)

E

[

max

(

2
∑

l=1

∑

i

ai,j,lai,k ,l

)]

= min

(

2
∑

l=1

∑

i

ai,j,l;
2

∑

l=1

∑

i

ai,k ,l

)

proxy for r2LD , keeping in mind that E
(

r2LD
)

= r2ac [13]. The
above steps can be applied to detect any pairs of SNPs
with r2ac = 1 , by replacing in Eq. (1) e.g.

∑2
k=1

∑

i ai,j,l
with

∑

i xi,j , where xi,j is the allele count (ac) of individual
i at SNP j , yielding:

Thus, in this case, allele counts per individual are com-
pared instead of phased alleles within haplotypes and
individuals.

Detection of SNPs in high LD
In parallel to the identification of SNPs in complete LD,
it may be of interest to identify SNPs in (very) high LD,
for instance with r2LD values higher than 0.95 or 0.99.
This is the second step in the SNPrune algorithm. The

(3)

r2ac
(

x.,j; x.,k
)

=

(

∑

i xi,jxi,k −
∑

i xi,j
∑

i xi,k
n

)2

(

∑

i x
2
i,j −

(
∑

i xi,j)
2

n

)(

∑

i x
2
i,k −

(
∑

i xi,k)
2

n

) .

Page 4 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

Consider that we are comparing locus j and k , for
which Eq. (11) is satisfied. If for any subset of the data,
Eq. (11) is not satisfied, meaning that:

then the r2LD value between loci j and k cannot exceed
the threshold t . Thus, after identifying pairs of SNPs
based on sums across all individuals using the inter-
val defined in Eq. (10), we evaluate those pairs based on
sums of subsets of the individuals. This involves comput-
ing “partial” sums for an arbitrary number of subsets of
the data. We used 10 subsets that contained 10, 20,…,
100% of the data. Note that those partial sums can be
computed once for every SNP and stored. Those partial
sums are tested against the condition defined in Eq. (12).
Whenever one of the partial sums fulfils the condition in

(11)
2

∑

l=1

∑

i

ai,k ,l ≤ maxk

(

2
∑

l=1

∑

i

ai,j,l

)

.

(12)

2
∑

l=1

∑

i

ai,k ,l −
2

∑

l=1

∑

i

ai,j,l

> maxk

(

2
∑

l=1

∑

i

ai,j,l

)

−
2

∑

l=1

∑

i

ai,j,l

Using Eqs. (6) and (7), for any possible value of
∑2

l=1

∑

i ai,j,l , we can compute and store the range of val-
ues

∑2
k=1

∑

i ai,k ,l for a locus k that satisfy Eq. (5). This is
done by considering that the MAF of locus j is lower or
equal to the MAF of locus k . As a result, Eq. (7) simplifies
to:

and Eq. (6) simplifies to:

(8)E

[

max

(

2
∑

l=1

∑

i

ai,j,lai,k ,l

)]

=
2

∑

l=1

∑

i

ai,j,l ,

(9)

2
�

l=1

�

i

ai,j,l

>

�

�

�

�

�

�

t







2
�

l=1

�

i

a2i,j,l −

�

�2
l=1

�

i ai,j,l

�2

2n













2
�

l=1

�

i

a2i,k ,l −

�

�2
l=1

�

i ai,k ,l

�2

2n







+

�2
l=1

�

i ai,j,l
�2

l=1

�

i ai,k ,l

2n
.

In spite of the fact that this considerably reduces the
number of r2LD values that need to be computed, ini-
tial analyses showed that the total number might still
be equal to several billions for datasets with a few mil-
lion SNPs. In an attempt to further reduce the num-
ber of combinations for which r2LD values need to be
computed, we noted that the same principle can be
applied to any (random) subset of the data. Because in
our algorithm, due to sorting based on MAF, and the
assumption that minor alleles are coded as 1, in all cases
∑2

l=1

∑

i ai,k ,l ≥
∑2

l=1

∑

i ai,j,l . Thus, Eq. (10) can be
rewritten to a restriction for

∑2
l=1

∑

i ai,k ,l as:

For each possible value of
∑2

l=1

∑

i ai,j,l , we can com-
pute the maximum value of

∑2
l=1

∑

i ai,k ,l that may still
result in

∣

∣rLD
(

a.,j,., a.,k ,.
)∣

∣ >
√
t . This is achieved by ini-

tializing
∑2

l=1

∑

i ai,j,l = 0 and then using the following
steps:

(1)  Increase
∑2

l=1

∑

i ai,j,l by a value of 1;
(2)  Set

∑2
l=1

∑

i ai,k ,l =
∑2

l=1

∑

i ai,j,l;
(3)  Use Eq. (9) to determine whether the threshold

can potentially be exceeded for the current values
of
∑2

l=1

∑

i ai,k ,l and
∑2

l=1

∑

i ai,j,l;
(4)  If the threshold can be exceeded, then

∑2
l=1

∑

i ai,k ,l is increased by 1 and repeat step (3);
if not, then store
maxk

(

∑2
l=1

∑

i ai,j,l

)

=
∑2

l=1

∑

i ai,k ,l , and return

to step (1).

The values stored in step (4) provide the range of val-
ues of

∑2
l=1

∑

i ai,k ,l , and thereby the range of loci, that
should be considered when evaluating high LD for a locus
j . That is, the range of

∑2
l=1

∑

i ai,k ,l values that should be
considered for any value of

∑2
l=1

∑

i ai,j,l is defined as:

(10)

2
∑

l=1

∑

i

ai,k ,l ∈

[

2
∑

l=1

∑

i

ai,j,l;maxk

(

2
∑

l=1

∑

i

ai,j,l

)]

.

Page 5 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

Eq. (12), no other comparisons are performed for the pair
of SNPs j and k . Note that this comparison based on par-
tial sums should not be performed for any pair of SNPs
in which one SNP has a MAF of exactly 0.5, because in
this case coding the minor allele as 1 is ambiguous. The
final step of the algorithm is to compute r2LD values for
all pairs of SNPs that did not fail the test based on par-
tial sums. In this last step, for any of those pairs of SNPs
only

∑2
l=1

∑

i ai,j,lai,k ,l is computed, since all other values
in Eq. (1) are computed once and stored, as previously
noted.

Since the algorithm to detect SNPs that are in complete
LD is much more efficient than the algorithm to detect
SNPs that are in high LD, both algorithms are applied
sequentially in SNPrune when the aim is to prune for
high LD. This is especially useful when pruning whole-
genome sequence data, in which the number of SNPs
in complete LD may be relatively large compared to the
total number of SNPs [14].

The algorithm described above, which relies on phased
alleles, can be applied to allele counts as well, by assum-
ing that, in fact, phased alleles are known. This involves
the assumption that if an individual is heterozygous at
two loci, the minor allele at the two SNPs reside in the
same haplotype, since this will give the maximum pos-
sible contribution to the r2 value. In Fig. 1 and Addi-
tional file 2, we show that the expected maximum values
of r2LD and r2ac are virtually the same for values ranging
from ~ 0.95 to 1.0 (i.e.

(

Emax

(

r2ac
)

/Emax

(

r2LD
))

 has values
ranging from 1.0000 to 1.0007), which confirms that, in
this range, we can use the algorithm for r2LD to identify
which loci may surpass the threshold for r2ac . The only
other change that should be made to the algorithm for
using allele counts instead of phased alleles on input, is
that, in the final step, r2ac instead of r2LD are computed.

Data pruning
To demonstrate the performance of the algorithm devel-
oped here, we applied it to two datasets. The first data-
set comprised 3534 pigs with genotypes for 52,843 SNPs,
which originated from the 60k SNP array. Details of this
dataset are described by Cleveland et al. [15]. The geno-
types were partly imputed, and defined as a real number
on the 0–2 scale. Before pruning the data, these values
were transformed as follows. Values lower or equal to
0.5 were set to 0, values higher or equal to 1.5 were set to
2, and all other values were set to 1. The second dataset
was simulated using QMSim [16] and contained whole-
genome sequence data. The simulation process tried to
mimic a historic dairy cattle population and a modern
population under selection. The targeted effective popu-
lation sizes ( Ne ) that changed over time reflected differ-
ent estimated Ne values during the history of the US and

Canadian Holstein cattle [17]. After the historic popula-
tion, 20 generations of 2500 animals with an equal sex
ratio were simulated, using 200 males and 2500 females
as parents. All male parents were replaced at each gen-
eration, and were selected based on breeding values
for a polygenic trait with an accuracy of 0.8. After each
generation, half of the female parents were replaced by
all females generated in this generation. The final data-
set, used for analyses, contained all 2500 animals of the
last generation. For these animals, 10,812,225 segregat-
ing SNPs were available, spread across 29 autosomes.
The phase of the alleles was outputted by QMSim and
assumed to be known without error in the analyses to
prune SNPs based on LD.

The algorithm developed here was used to prune both
datasets that are described above based on r2ac . In addi-
tion, the whole-genome sequence dataset was also
pruned based on phased alleles, to demonstrate the dif-
ference between both strategies. In all cases, a threshold
for r2 of 0.99 was used. To compare performances, the
datasets were also pruned based on r2ac using the software
PLINK version 1.90 beta [18, 19]. Pruning based on LD
in PLINK is performed using a sliding window along the
genome. For the pig dataset, it was still possible to con-
sider all pairwise combinations by including all SNPs in
one window. For the sequence data, this was not pos-
sible within acceptable computing time. Thus, sliding
windows of 50, 500, 5000, 50,000, 500,000, or 5,000,000
SNPs were used for the sequence data, that were shifted
forward in steps of 10% of the window size, i.e. with 5, 50,

Fig. 1  Relationship between expected maximum values for r2 values
computed based on allele count ( r2ac ) or phased alleles ( r2

LD
 ). Pairs of r2

values are indicated by black dots. The red line indicates r2ac = r
2

LD
 as

a reference

Page 6 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

500, 5000, 50,000, or 500,000 SNPs, respectively. The LD
threshold used for pruning was 0.99, i.e. the same value
as for SNPrune. For window sizes of up to 500,000 SNPs,
PLINK was also run using the option that estimates r2LD
based on phasing information obtained with maximum
likelihood. The command line argument used to run
PLINK using r2ac was (using a window of 5000 SNPs) the
following: plink --bed data.bed --indep-pairwise 5000
500 0.99, and when using the maximum likelihood phas-
ing information it was: plink --bed data.bed --indep-pair-
phase 5000 500 0.99.

Results
Pig data
The pig dataset was pruned only by considering allele
counts, since no map or phasing information was avail-
able. We performed pruning three times by using the two
algorithms SNPrune and PLINK (Table 1). The first time,
the data were fed to both programs without any pre-sort-
ing based on MAF, and SNPrune and PLINK removed
9126 and 9038 SNPs, respectively, with 6792 SNPs that
overlapped. This relatively small overlap was most likely
largely due to the removal of different SNPs from each
pair in high LD, because the order in which SNPs were
processed differed between programs. The second time,
the order of the SNPs was based on increasing MAF, to
make sure that both programs processed the SNPs in the
same order. In this case, SNPrune and PLINK removed
9126 and 9098 SNPs, respectively, with 6844 SNPs that
overlapped. Finally, the data were first pre-sorted on
MAF, and then pre-pruned for complete LD. This prun-
ing step removed 3830 SNPs. The remaining 49,013
SNPs, still pre-sorted based on MAF, were pruned for
high LD. In this case, SNPrune and PLINK removed
5296 and 5283 SNPs, respectively, with 4939 SNPs that
overlapped.

PLINK computed all 1.4 × 109 pairwise r2ac values. Con-
sidering the analyses of SNPrune, a relevant question is
how efficient is the algorithm in avoiding computation of
r2ac values that were predicted to never reach the imposed
threshold of 0.99. Using Eq. (9), SNPrune filtered
9,898,092 pairs of SNPs that potentially could have a r2ac
higher than 0.99 (Table 2). Based on partial sums of the
minor allele, the number of r2ac that needed to be com-
puted decreased to 3,718,230. This was only 0.27% of the
total number of possible r2ac values in the entire dataset,
or 0.31% of the total number of possible r2ac values after
pruning for complete LD.

Simulated sequence data
First, pruning of the simulated sequence data was done
by using SNPrune based on phased alleles or allele
counts (Table 3). Results using one or ten threads were
identical. In total, 6,367,210 and 6,366,971 SNPs were
removed based on complete LD, and another 1,428,122
and 1,428,725 SNPs were removed based on an r2ac or
r2LD higher than 0.99, using allele counts and phased
alleles, respectively. In total, 3,016,893 and 3,016,529 of
10,812,225 SNPs remained after pruning, using allele
counts or phased alleles, respectively. Sets of SNPs that
were removed by using phased alleles or allele counts
showed an overlap of more than 99.9% (results not
shown).

Pruning of the sequence data was also done using
PLINK. It was not possible to consider all possible pair-
wise r2 values within an acceptable computing time, so
we used sliding windows ranging from 50 to 5,000,000
SNPs. Whether pruning was based on allele counts or
maximum likelihood derived phasing information, hardly
affected the results. For example, the difference in num-
ber of SNPs removed for the window size of 5000 SNPs
was only 342, which represents 0.0044% of the SNPs
removed, while the overlap between removed SNPs was
more than 99.9%. This result is in agreement with the
SNPrune results using either allele counts or phased Table 1  Number of pruned SNPs from the 52,843 SNPs

present on the 60k pig SNP array

a  Either the LD pruning is done in one step, or in two steps, where 3830 SNPs in
complete LD with other SNPs are removed in the first step, and the remaining
SNPs in high LD are removed in the second step
b  Including the 3830 removed due to complete LD
c  Overlap between SNPs pruned by SNPrune and PLINK

Analysis One stepa One stepa pre-
sorted on MAF

Two stepa pre-
sorted on MAF

Number
of SNPs pruned
out

Total Total High LD Totalb

SNPrune 9126 9126 5296 9126

PLINK 9038 9098 5283 9113

Overlapc 6792 6844 4939 8778

Table 2  Numbers of SNP pairs for which r2 values were
computed for the pig data

a  Number of computed r2 values as percentage of the total number of r2 values
b  Number of computed r2 values as percentage of the total number of r2 values
after pruning for complete LD

Number of pairs of SNPs Allele counts

Possibly > 0.99 9,898,092

< 0.99 (partial sums) 6,179,862

Computed r2 values 3,718,230

Percentage (all SNPs)a 0.27

Percentage (after pruning for complete LD)b 0.31

Page 7 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

alleles, for which the overlap between removed SNPs
was also close to 100%. When allele counts were used
in PLINK, 5,411,028 SNPs remained after pruning with
a window of 50 and this number dropped to 3,059,391
with a window of 5,000,000 (Table 3). When a window of
5,000,000 SNPs was used, PLINK removed 42,498 SNPs
less than SNPrune based on allele counts.

The number of r2 values computed by PLINK ranged
from 2.65 × 109 to 2.65 × 1014 with window sizes rang-
ing from 50 to 5,000,000 (Table 4). SNPrune identi-
fied ~ 107.5 × 109 pairs of SNPs that potentially could
have a r2ac higher than 0.99 (Table 5). Based on partial
sums of the minor allele, the number of r2ac that needed
to be computed was reduced to ~ 61.2 × 109. Thus, the
number of computed r2 values was only 0.08% of the
total number of possible r2 values in the entire dataset,
or 0.47% of the total number of possible r2 values after
pruning for complete LD.

Computational requirements
The computing time required to process the pig data,
averaged across five analyses and using one thread for
all analyses, was equal to 17.2 s for SNPrune and 3 min
9.3 s for PLINK. Thus, SNPrune was 11 times faster
than PLINK. For the sequence data with a single thread,
SNPrune required 4 h 16 min using phased alleles, and
2 h 28 min using allele counts (Fig. 2). Using ten threads,
SNPrune required 42 min using phased alleles, and
21 min using allele counts, i.e. the latter almost halved
the computing time. Computing times for PLINK were
as short as only 1 min with a sliding window of 50, and
increased linearly with increasing window size, to a

computing time of 58 h 44 min using a window size of
500,000 SNPs. Window size and step size (i.e. the dis-
tance between the first SNP for two consecutive win-
dows) increased each time by a factor 10. This means that
when the window size increased by a factor 10, the num-
ber of computed r2 values roughly increased by 102, while
the number of windows decreased by a factor 10. Thus,
in effect, the number of computations increased by a fac-
tor ~ 10, which caused the observed linear increase with
increasing window size.

For the pig data, the peak RAM use was 213 Mb for
SNPrune, and 215 Mb for PLINK. For the sequence
data, the peak RAM use for SNPrune was 56.5 Gb using
phased alleles and 29.8 Gb using allele counts. We ran
the analysis using allele counts of all SNPs in PLINK (i.e.

Table 3  Number of pruned SNPs from the 10,812,225 SNPs included in the simulated sequence dataset

a  Using a sliding window of 50, 500, 5000, 50,000, 500,000 or 5,000,000 SNPs
b  The r2 values are computed between allele counts, considering no phasing (NP)
c  The r2 values are computed between alleles that are phased based on maximum likelihood phasing (MLP)

Pruning approach Number of SNPs pruned out Number of SNPs left

Complete LD High LD Total

SNPrune allele counts 6,367,210 1,428,122 7,795,332 3,016,893

SNPrune phased alleles 6,366,971 1 428 725 7,795,696 3,016,529

PLINK (w50a) NPb NA NA 5,401,197 5,411,028

PLINK (w500a) NPb NA NA 7,547,118 3,265,107

PLINK (w5000a) NPb NA NA 7,740,937 3,071,288

PLINK (w50000a) NPb NA NA 7,750,558 3,061,667

PLINK (w500000a) NPb NA NA 7,752,008 3,060,217

PLINK (w5000000a) NPb NA NA 7,752,834 3,059,391

PLINK (w50a) MLPc NA NA 5,401,527 5,410,698

PLINK (w500a) MLPc NA NA 7,543,234 3,268,991

PLINK (w5000a) MLPc NA NA 7,741,279 3,070,946

PLINK (w50000a) MLPc NA NA 7,751,008 3,061,217

PLINK (w500000a) MLPc NA NA 7,752,485 3,059,740

Table 4  Number of computed r2 values in the simulated
sequence dataset using PLINK

a  Computed as (10, 812, 225/ss)×
(

ws
2 − ws

)

/2 , where 10,812,225 is the
total number of SNPs, ss is the step size (i.e. the size of the shift of the windows),
and ws is the window size used

Window size Step size Number
of computed r2
valuesa

50 5 2.65 × 109

500 50 2.70 × 1010

5000 500 2.70 × 1011

5000 5000 2.70 × 1012

500,000 50,000 2.70 × 1013

5,000,000 500,000 2.70 × 1014

Page 8 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

using a window size comprising the entire genome) for
some time, but we did not let the analysis finish since it
was too long. However, this allowed us to assess that the
peak memory used in this case by PLINK was 33.0 Gb,
but the memory use of PLINK dropped considerably,
when smaller windows sizes were used.

Discussion
In this paper, we describe the algorithm SNPrune, which
we developed to efficiently prune SNPs in complete or
very high LD in datasets containing a large number of
SNPs. SNPrune was 11 times faster than PLINK when
applied to a dataset with 3534 pigs and 52k SNPs. We

also show that SNPrune is able to prune sequence data
with 2500 individuals and more than 10 million SNPs in
21 min using 10 threads. These results demonstrate that
SNPrune is a very efficient algorithm to prune large data-
sets for high levels of LD, e.g. r2 > 0.99 , as used in our
study.

Pruning based on phased alleles versus allele counts
gave similar results, both with SNPrune and PLINK, but
when the analysis used allele counts, it was considerably
faster, for both algorithms. For SNPrune, the analysis
using allele counts was almost twice as fast compared to
using phased alleles, while for PLINK the analysis using
allele counts was ~ 2 to 4 times faster. The explanation of
this factor 2 found for SNPrune is that the highest cost
of SNPrune is to compute the cross-products of either
the genotypes or the phased alleles, for all pairs of SNPs
for which the r2 is computed. When using phased alleles,
each of those cross-products involves twice as many mul-
tiplications compared to when using allele counts. For
PLINK, the difference is larger, because PLINK actually
performs the phasing itself, in addition to computing the
r2 values. Interpolating the results in Fig. 2 shows that
for window sizes of ~ 15,000 and ~ 25,000 SNPs, PLINK
needs the same computing time for using either allele
counts or phased alleles, respectively. In both cases,
SNPrune removed only ~ 0.4% more SNPs than PLINK.
Thus, in the case of a sequence dataset with similar
properties as that used in our study, using PLINK with a

Table 5  Number of pairs of SNPs for which r2 values were
computed for the simulated sequence dataset

a  The number of computed r2 values as percentage of the total number of r2
values
b  The number of computed r2 values as percentage of the total number of r2
values after pruning for complete LD

Number of pairs of SNPs Phased alleles Allele counts

Possibly > 0.99 107,576,540,902 107,567,702,834

< 0.99 (partial sums) 61,142,300,573 61,152,664,161

Computed r2 values 46,434,240,329 46,415,038,673

Percentage (all SNPs)a 0.08 0.08

Percentage (after pruning for
complete LD)b

0.47 0.47

Fig. 2  Computation time to prune the sequence data using SNPrune and PLINK with various settings

Page 9 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

sliding window of ~ 20,000 SNPs achieves similar results
as SNPrune in similar computing time, albeit that PLINK
still leaves some pairs of distant SNPs in high LD in the
data.

Applications of SNPrune
To limit computing time with PLINK or other similar
software, usually only SNPs in close proximity on the
same chromosome, e.g. less than 2 Mb apart, are com-
pared. When the goal is to evaluate levels of LD, such a
window-based approach is usually sufficient. When the
goal is to reduce co-linearity between loci, for instance to
improve the performance of a subsequent genomic pre-
diction model, then it is desirable to consider all possi-
ble pairwise combinations of loci. SNPrune enables the
detection of pairs of SNPs that are in strong LD regard-
less of their locations in the genome. In randomly mating
populations, LD between loci on different chromosomes
is expected to be low, and pairwise high levels of LD
may only appear by chance. However, high levels of LD
between loci on different chromosomes may be more fre-
quent in highly structured populations such as livestock
populations. Our simulated data mimicked a dairy cattle
population under selection. Among the removed SNPs,
considering the analyses based on allele counts, 0.6%
belonged to a pair of SNPs that were located on differ-
ent chromosomes. The remaining 99.4% belonged to a
pair of SNPs that were located on the same chromosome,
and were on average 0.59 cM apart. Nevertheless, pairs of
SNPs that were on the same chromosome could be sepa-
rated by a large distance (Fig. 3).

In the context of genomic prediction, high LD between
SNPs can impair model performance [14]. The aim of
genomic prediction is to put most of the emphasis, in
terms of estimated effects, on SNPs in close LD with
typically unobserved causal variants. In this sense, “spuri-
ous” associations, in which a SNP has a large estimated
effect due to high LD with a causal variant although it is
not close to it on the genome, are not desired. Such spu-
rious associations will lead to estimated SNP effects that
erode quickly over time. Thus, from the perspective of
genomic prediction, it is important to consider all pair-
wise combinations of SNPs when pruning for high LD,
rather than only those in a sliding window, as for instance
in VanRaden et al. [20]. For the removal of spurious asso-
ciations, the choice of which SNP should be removed
from a pair of SNPs that are in high LD, could perhaps be
made in a more sophisticated way. For a pair of distantly
located SNPs with high LD, one option is to retain the
SNP that has the highest LD with the surrounding SNPs.
If the pair of SNPs is in LD with a causal variant, then
this SNP is expected to be more likely physically closely
located to this variant.

Pruning for LD may considerably reduce the computa-
tional burden of genomic prediction based on sequence
data, since, in our study, the number of SNPs in the
simulated sequence data decreased by 72%. In the lit-
erature, a reduction of 58% was reported when imputed
sequence data were used with 14 million SNPs for 5553
Holstein–Friesian dairy bulls and LD pruning in subsets
of the SNPs was applied [14], and in another study, a
reduction of 99.5% was observed using 145 tomato acces-
sions with imputed sequence data with 19.6 million SNPs
[21]. Nevertheless, our results obtained with PLINK and
the distribution of the distance between pairs of SNPs
exceeding the r2 threshold (Fig. 3) show that using a win-
dow approach does lead to the removal of the majority of
SNPs that are in high LD with each other.

The ability to efficiently identify SNPs that are in high
LD with other SNPs located elsewhere in the genome,
while they are in low LD with the surrounding SNPs,
is also useful for other applications. In empirical analy-
ses, high LD of one SNP with a group of SNPs located
on another chromosome, maybe an indication that this
SNP resides in a misassembled segment of the reference
genome [22]. Therefore, SNPrune could be also a very
useful tool to detect rapidly genome segments that may
be misassembled. Similarly, the algorithm could be used
in LD-based approaches to derive the chromosomal loca-
tions of unmapped SNPs [23–25].

Fine‑tuning SNPrune
The amount of whole-genome sequence data gener-
ated is rapidly growing and soon, datasets for 100,000
sequenced animals may be available. Computing time is
expected to increase linearly with increasing numbers of

Fig. 3  Distribution of distances between pairs of SNPs pruned from
the sequence data that were located on the same chromosome

Page 10 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

individuals, both for PLINK and SNPrune, because the
number of multiplications required to compute a single
r2 value is proportional to the number of individuals. In
the analyses of the simulated sequence data, 57% of the
pairs of SNPs that were identified based on their MAF as
possibly exceeding the threshold of 0.99, were discarded
by evaluating partial sums (i.e. sums based on subsets of
the data) of the minor allele rather than the sums of the
minor allele of the entire data. Here, we used ten par-
tial sums, comprising 10, 20,…, 100% of the data. With
more individuals, it is possible that the percentage of
pairs of SNPs that are discarded based on partial sums
will be larger, and fine-tuning the number of subsets may
increase this percentage even more.

The implementation of SNPrune presented in this
paper is not able to deal with missing genotypes, but we
showed that it is able to efficiently remove SNPs in high
LD. Pruning for considerably lower LD thresholds, i.e. r2
values lower than 0.8, means that the maximum differ-
ence in MAF for a pair of SNPs to possibly exceed this
threshold will be considerably larger. This could lead to a
relatively small reduction in the number of r2 values that
need to be computed, compared to all pairwise combina-
tions. Extending the algorithm to tolerate small amounts
of missing data, and fine-tuning its performance for con-
siderably lower LD thresholds, may increase its poten-
tial for other applications than those investigated in our
study.

While SNPrune is able to remove SNPs in high LD
throughout the genome in large datasets very efficiently,
the current implementation uses a one-byte format to
handle (phased) SNP genotypes. Therefore, additional
computing improvements could be realised by using a
packed 2-bit format, which will allow bit-level operations
and parallelism, as detailed by Chang et al. [18]. Adap-
tation of the two algorithms for bit-level parallelism is
possible because their main operations involve integers
0 and 1 for phased genotypes, or integers 0, 1, and 2 for
allele counts (if missing values are ignored). As previ-
ously mentioned, allele counts could be considered as
phased SNPs. Using such a packed 2-bit format, bit-level
operations will improve the computation of terms such
as

∑2
l=1

∑

i ai,j,l or
∑2

l=1

∑

i ai,j,lai,k ,l , and reduce RAM
and CPU time requirements, which would improve the
efficiency of SNPrune even more.

Conclusions
We developed an algorithm SNPrune that is able to
remove SNPs in high LD throughout the genome in large
datasets very efficiently. For a simulated whole-genome
sequence dataset, we show that 72% of the SNPs were
removed by pruning SNPs with r2 higher than 0.99,
which reduces computational burden in subsequent

genomic prediction due to the steeply reduced dimen-
sion of the data, but also to the considerable reduction in
co-linearity in the SNP data. The SNPrune algorithm may
also be useful for other applications such as detection of
misassembled segments in reference genomes.

Authors’ contributions
MPLC conceived the idea of the algorithm, programmed its first implementa-
tion, and wrote the first draft of the manuscript. JV helped to optimize the
algorithm, and to implement multithreading. All authors read and approved
the final manuscript.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The pig data used is available from http://www.g3jou​rnal.org/conte​nt/suppl​
/2012/04/06/2.4.429.DC1. The parameter files to analyse the simulated and pig
data, a brief explanation, and the files to reproduce the simulated data are also
available at https​://githu​b.com/mario​calus​/SNPru​ne.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This study was financially supported by the Dutch Ministry of Economic Affairs
(TKI Agri & Food Project 16022) and the Breed4Food partners Cobb Europe,
CRV, Hendrix Genetics and Topigs Norsvin (Public–private partnership “Breed-
4Food” code BO-22.04-011-001-ASG-LR). The use of the HPC cluster was made
possible by CAT-AgroFood (Shared Research Facilities Wageningen UR).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 28 March 2018 Accepted: 11 June 2018

References
	1.	 Larmer SG, Sargolzaei M, Schenkel FS. Extent of linkage disequilibrium,

consistency of gametic phase, and imputation accuracy within and
across Canadian dairy breeds. J Dairy Sci. 2014;97:3128–41.

	2.	 Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor
Appl Genet. 1968;38:226–31.

	3.	 Boison SA, Santos DJA, Utsunomiya AHT, Carvalheiro R, Neves HHR,
O’Brien AMP, et al. Strategies for single nucleotide polymorphism (SNP)
genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy
cattle: comparison of commercially available SNP chips. J Dairy Sci.
2015;98:4969–89.

Additional files

Additional file 1. Pseudo code for the algorithms presented.

Additional file 2. Relationship between expected maximum values for
r
2

LD
 and r2

ac
.

http://www.g3journal.org/content/suppl/2012/04/06/2.4.429.DC1
http://www.g3journal.org/content/suppl/2012/04/06/2.4.429.DC1
https://github.com/mariocalus/SNPrune
https://doi.org/10.1186/s12711-018-0404-z
https://doi.org/10.1186/s12711-018-0404-z

Page 11 of 11Calus and Vandenplas ﻿Genet Sel Evol (2018) 50:34

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

	4.	 Wiggans GR, Sonstegard TS, Vanraden PM, Matukumalli LK, Schnabel RD,
Taylor JF, et al. Selection of single-nucleotide polymorphisms and quality
of genotypes used in genomic evaluation of dairy cattle in the United
States and Canada. J Dairy Sci. 2009;92:3431–6.

	5.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81:559–75.

	6.	 Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of
LD and haplotype maps. Bioinformatics. 2005;21:263–5.

	7.	 Megens HJ, Crooijmans R, Bastiaansen JWM, Kerstens HHD, Coster A, Jalv-
ing R, et al. Comparison of linkage disequilibrium and haplotype diversity
on macro- and microchromosomes in chicken. BMC Genet. 2009;10:86.

	8.	 Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Al Cavanagh J, Barris
W, et al. Extent of genome-wide linkage disequilibrium in Australian
Holstein-Friesian cattle based on a high-density SNP panel. BMC Genom-
ics. 2008;9:187.

	9.	 Porto-Neto LR, Kijas JW, Reverter A. The extent of linkage disequilibrium
in beef cattle breeds using high-density SNP genotypes. Genet Sel Evol.
2014;46:22.

	10.	 Duijvesteijn N, Knol EF, Merks JWM, Crooijmans RPMA, Groenen MAM,
Bovenhuis H, et al. A genome-wide association study on androstenone
levels in pigs reveals a cluster of candidate genes on chromosome 6.
BMC Genet. 2010;11:42.

	11.	 Luo C, Qu H, Ma J, Wang J, Li C, Yang C, et al. Genome-wide association
study of antibody response to Newcastle disease virus in chicken. BMC
Genet. 2013;14:42.

	12.	 Li Z, Qu J, Xu X, Zhou X, Zou H, Wang N, et al. A genome-wide association
study reveals association between common variants in an intergenic
region of 4q25 and high-grade myopia in the Chinese Han population.
Hum Mol Genet. 2011;20:2861–8.

	13.	 Rogers AR, Huff C. Linkage disequilibrium between loci with unknown
phase. Genetics. 2009;182:839–44.

	14.	 Calus MPL, Bouwman AC, Schrooten C, Veerkamp RF. Efficient genomic
prediction based on whole-genome sequence data using split-and-
merge Bayesian variable selection. Genet Sel Evol. 2016;48:49.

	15.	 Cleveland MA, Hickey JM, Forni S. A common dataset for genomic analy-
sis of livestock populations. G3 (Bethesda). 2012;2:429–35.

	16.	 Sargolzaei M, Schenkel FS. QMSim: a large-scale genome simulator for
livestock. Bioinformatics. 2009;25:680–1.

	17.	 Sargolzaei M, Schenkel FS, Jansen GB, Schaeffer LR. Extent of link-
age disequilibrium in Holstein cattle in North America. J Dairy Sci.
2008;91:2106–17.

	18.	 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: rising to the challenge of larger and richer datasets.
GigaScience. 2015;4:7.

	19.	 Chang C.: PLINK 1.90 beta [online]. http://www.cog-genom​ics.org/plink​2/
(2016). Accessed 24 June 2016.

	20.	 VanRaden PM, O’Connell JR. Strategies to choose from millions of
imputed sequence variants. Interbull Bull. 2015;49:10–3.

	21.	 van Binsbergen R. Prospects of whole-genome sequence data in animal
and plant breeding. PhD thesis, Animal Breeding and Genomics Centre,
Wageningen University, Wageningen, the Netherlands; 2017.

	22.	 Utsunomiya ATH, Santos DJA, Boison SA, Utsunomiya YT, Milanesi M, Bick-
hart DM, et al. Revealing misassembled segments in the bovine reference
genome by high resolution linkage disequilibrium scan. BMC Genomics.
2016;17:705.

	23.	 Khatkar MS, Hobbs M, Neuditschko M, Sölkner J, Nicholas FW, Raadsma
HW. Assignment of chromosomal locations for unassigned SNPs/scaffolds
based on pair-wise linkage disequilibrium estimates. BMC Bioinformatics.
2010;11:171.

	24.	 Miller SP, Hayes BJ, Goddard ME. Positioning single nucleotide poly-
morphisms on an existing bovine map using a genetic algorithm and
estimates of linkage disequilibrium. In: Proceedings of the 8th world
congress on genetics applied to livestock production, 13–18 August
2006. Belo Horizonte; 2006. Vol. Communication, pp. 21–14.

	25.	 Sölkner J, Neuditschko M, Khatkar MS, Hobbs M, Zenger KR, Raadsma HW,
et al. A new type of genetic map: locus ordering based on pairwise link-
age disequilibria. In: Proceedings of the 59th annual meeting of the EAAP,
24–27 Aug 2005. Vilnius; 2008.

http://www.cog-genomics.org/plink2/

	SNPrune: an efficient algorithm to prune large SNP array and sequence datasets based on high linkage disequilibrium
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Methods
	Detection of SNPs in complete LD
	Detection of SNPs in high LD
	Data pruning

	Results
	Pig data
	Simulated sequence data
	Computational requirements

	Discussion
	Applications of SNPrune
	Fine-tuning SNPrune

	Conclusions
	Authors’ contributions
	References

